Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
1.
Sleep ; 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38571402

RESUMEN

Although genome wide association studies (GWAS) have identified loci for sleep-related traits, they do not directly uncover the underlying causal variants and corresponding effector genes. The majority of such variants reside in non-coding regions and are therefore presumed to impact cis-regulatory elements. Our previously reported 'variant-to-gene mapping' effort in human induced pluripotent stem cell (iPSC)-derived neural progenitor cells (NPCs), combined with validation in both Drosophila and zebrafish, implicated PIG-Q as a functionally relevant gene at the insomnia 'WDR90' GWAS locus. However, importantly that effort did not characterize the corresponding underlying causal variant. Specifically, our previous 3D genomic datasets nominated a shortlist of three neighboring single nucleotide polymorphisms (SNPs) in strong linkage disequilibrium within an intronic enhancer region of WDR90 that contacted the open PIG-Q promoter. We sought to investigate the influence of these SNPs collectively and then individually on PIG-Q modulation to pinpoint the causal "regulatory" variant. Starting with gross level perturbation, deletion of the entire region in NPCs via CRISPR-Cas9 editing and subsequent RNA sequencing revealed expression changes in specific PIG-Q transcripts. Results from individual luciferase reporter assays for each SNP in iPSCs revealed that the region with the rs3752495 risk allele induced a ~2.5-fold increase in luciferase expression. Importantly, rs3752495 also exhibited an allele specific effect, with the risk allele increasing the luciferase expression by ~2-fold versus the non-risk allele. In conclusion, our variant-to-function approach and in vitro validation implicates rs3752495 as a causal insomnia variant embedded within WDR90 while modulating the expression of the distally located PIG-Q.

2.
bioRxiv ; 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38562830

RESUMEN

Over 1,100 independent signals have been identified with genome-wide association studies (GWAS) for bone mineral density (BMD), a key risk factor for mortality-increasing fragility fractures; however, the effector gene(s) for most remain unknown. Informed by a variant-to-gene mapping strategy implicating 89 non-coding elements predicted to regulate osteoblast gene expression at BMD GWAS loci, we executed a single-cell CRISPRi screen in human fetal osteoblast 1.19 cells (hFOBs). The BMD relevance of hFOBs was supported by heritability enrichment from cross-cell type stratified LD-score regression involving 98 cell types grouped into 15 tissues. 24 genes showed perturbation in the screen, with four (ARID5B, CC2D1B, EIF4G2, and NCOA3) exhibiting consistent effects upon siRNA knockdown on three measures of osteoblast maturation and mineralization. Lastly, additional heritability enrichments, genetic correlations, and multi-trait fine-mapping revealed that many BMD GWAS signals are pleiotropic and likely mediate their effects via non-bone tissues that warrant attention in future screens.

3.
Elife ; 122024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38655862

RESUMEN

Ikaros is a transcriptional factor required for conventional T cell development, differentiation, and anergy. While the related factors Helios and Eos have defined roles in regulatory T cells (Treg), a role for Ikaros has not been established. To determine the function of Ikaros in the Treg lineage, we generated mice with Treg-specific deletion of the Ikaros gene (Ikzf1). We find that Ikaros cooperates with Foxp3 to establish a major portion of the Treg epigenome and transcriptome. Ikaros-deficient Treg exhibit Th1-like gene expression with abnormal production of IL-2, IFNg, TNFa, and factors involved in Wnt and Notch signaling. While Ikzf1-Treg-cko mice do not develop spontaneous autoimmunity, Ikaros-deficient Treg are unable to control conventional T cell-mediated immune pathology in response to TCR and inflammatory stimuli in models of IBD and organ transplantation. These studies establish Ikaros as a core factor required in Treg for tolerance and the control of inflammatory immune responses.


Asunto(s)
Factores de Transcripción Forkhead , Regulación de la Expresión Génica , Factor de Transcripción Ikaros , Linfocitos T Reguladores , Animales , Factor de Transcripción Ikaros/metabolismo , Factor de Transcripción Ikaros/genética , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Factores de Transcripción Forkhead/metabolismo , Factores de Transcripción Forkhead/genética , Ratones , Ratones Noqueados
4.
Environ Microbiol ; 26(3): e16600, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38482770

RESUMEN

Microbial community structure and function were assessed in the organic and upper mineral soil across a ~4000-year dune-based chronosequence at Big Bay, New Zealand, where total P declined and the proportional contribution of organic soil in the profile increased with time. We hypothesized that the organic and mineral soils would show divergent community evolution over time with a greater dependency on the functionality of phosphatase genes in the organic soil layer as it developed. The structure of bacterial, fungal, and phosphatase-harbouring communities was examined in both horizons across 3 dunes using amplicon sequencing, network analysis, and qPCR. The soils showed a decline in pH and total phosphorus (P) over time with an increase in phosphatase activity. The organic horizon had a wider diversity of Class A (phoN/phoC) and phoD-harbouring communities and a more complex microbiome, with hub taxa that correlated with P. Bacterial diversity declined in both horizons over time, with enrichment of Planctomycetes and Acidobacteria. More complex fungal communities were evident in the youngest dune, transitioning to a dominance of Ascomycota in both soil horizons. Higher phosphatase activity in older dunes was driven by less diverse P-mineralizing communities, especially in the organic horizon.


Asunto(s)
Microbiota , Suelo , Suelo/química , Fósforo/análisis , Bosque Lluvioso , Bacterias/genética , Microbiota/genética , Minerales , Monoéster Fosfórico Hidrolasas/genética , Microbiología del Suelo
5.
EBioMedicine ; 101: 105038, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38417377

RESUMEN

BACKGROUND: Carpal tunnel syndrome (CTS) is a common disorder caused by compression of the median nerve in the wrist, resulting in pain and numbness throughout the hand and forearm. While multiple behavioural and physiological factors influence CTS risk, a growing body of evidence supports a strong genetic contribution. Recent genome-wide association study (GWAS) efforts have reported 53 independent signals associated with CTS. While GWAS can identify genetic loci conferring risk, it does not determine which cell types drive the genetic aetiology of the trait, which variants are "causal" at a given signal, and which effector genes correspond to these non-coding variants. These obstacles limit interpretation of potential disease mechanisms. METHODS: We analysed CTS GWAS findings in the context of chromatin conformation between gene promoters and accessible chromatin regions across cellular models of bone, skeletal muscle, adipocytes and neurons. We identified proxy variants in high LD with the lead CTS sentinel SNPs residing in promoter connected open chromatin in the skeletal muscle and bone contexts. FINDINGS: We detected significant enrichment for heritability in skeletal muscle myotubes, as well as a weaker correlation in human mesenchymal stem cell-derived osteoblasts. In myotubes, our approach implicated 117 genes contacting 60 proxy variants corresponding to 20 of the 53 GWAS signals. In the osteoblast context we implicated 30 genes contacting 24 proxy variants coinciding with 12 signals, of which 19 genes shared. We subsequently prioritized BZW2 as a candidate effector gene in CTS and implicated it as novel gene that perturbs myocyte differentiation in vitro. INTERPRETATION: Taken together our results suggest that the CTS genetic component influences the size, integrity, and organization of multiple tissues surrounding the carpal tunnel, in particular muscle and bone, to predispose the nerve to being compressed in this disease setting. FUNDING: This work was supported by NIH Grant UM1 DK126194 (SFAG and WY), R01AG072705 (SFAG & KDH) and the Center for Spatial and Functional Genomics at CHOP (SFAG & ADW). SFAG is supported by the Daniel B. Burke Endowed Chair for Diabetes Research. WY is supported by the Perelman School of Medicine of the University of Pennsylvania.


Asunto(s)
Síndrome del Túnel Carpiano , Humanos , Síndrome del Túnel Carpiano/genética , Estudio de Asociación del Genoma Completo , Músculo Esquelético , Mapeo Cromosómico , Cromatina/genética , Proteínas de Unión al ADN/genética
6.
medRxiv ; 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-37693606

RESUMEN

The prevalence of childhood obesity is increasing worldwide, along with the associated common comorbidities of type 2 diabetes and cardiovascular disease in later life. Motivated by evidence for a strong genetic component, our prior genome-wide association study (GWAS) efforts for childhood obesity revealed 19 independent signals for the trait; however, the mechanism of action of these loci remains to be elucidated. To molecularly characterize these childhood obesity loci we sought to determine the underlying causal variants and the corresponding effector genes within diverse cellular contexts. Integrating childhood obesity GWAS summary statistics with our existing 3D genomic datasets for 57 human cell types, consisting of high-resolution promoter-focused Capture-C/Hi-C, ATAC-seq, and RNA-seq, we applied stratified LD score regression and calculated the proportion of genome-wide SNP heritability attributable to cell type-specific features, revealing pancreatic alpha cell enrichment as the most statistically significant. Subsequent chromatin contact-based fine-mapping was carried out for genome-wide significant childhood obesity loci and their linkage disequilibrium proxies to implicate effector genes, yielded the most abundant number of candidate variants and target genes at the BDNF, ADCY3, TMEM18 and FTO loci in skeletal muscle myotubes and the pancreatic beta-cell line, EndoC-BH1. One novel implicated effector gene, ALKAL2 - an inflammation-responsive gene in nerve nociceptors - was observed at the key TMEM18 locus across multiple immune cell types. Interestingly, this observation was also supported through colocalization analysis using expression quantitative trait loci (eQTL) derived from the Genotype-Tissue Expression (GTEx) dataset, supporting an inflammatory and neurologic component to the pathogenesis of childhood obesity. Our comprehensive appraisal of 3D genomic datasets generated in a myriad of different cell types provides genomic insights into pediatric obesity pathogenesis.

7.
Gastro Hep Adv ; 2(6): 830-842, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37736163

RESUMEN

BACKGROUND AND AIMS: A key histopathological feature of inflammatory bowel disease is damage to the mucosa, including breakdown of the epithelial barrier. Human enteroids and colonoids are a critical bench-to-bedside tool for studying the epithelium in inflammatory bowel disease. The goal of the current study was to define transcriptional differences in healthy versus diseased subjects that are sustained in enteroids and colonoids, including from disease-spared tissue. METHODS: Biopsies and matching enteroid or colonoid cultures from pediatric patients with ileal Crohn disease (N = 6) and control subjects (N = 17) were subjected to RNA sequencing followed by bioinformatic and machine learning analyses. Late passage enteroids were exposed to cytokines to assess durable transcriptional differences. RESULTS: We observed substantial overlap of pathways upregulated in Crohn disease in enteroids and ileal biopsies, as well as colonoids and rectal biopsies. KEGG pathways for cytokine-cytokine receptor interaction, chemokine signaling, protein export, and Toll-like receptor signaling were upregulated in both ileal and rectal biopsies, as well as enteroids and colonoids. In vitro cytokine exposure reactivated genes previously increased in biopsies. Machine learning predicted biopsy location (100% accuracy) and donor disease status (83% accuracy). A random forest classifier generated using ileal enteroids identified rectal colonoids from ileal Crohn disease subjects with 80% accuracy. CONCLUSION: We confirmed transcriptional profiles of Crohn disease biopsies are expressed in enteroids and colonoids. Furthermore, transcriptomic data from disease-spared rectal tissue can identify patients with ileal Crohn disease. Our data support the use of patient enteroids and colonoids as critical translational tools for the study of inflammatory bowel disease.

8.
bioRxiv ; 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37662342

RESUMEN

The ch12q13 obesity locus is among the most significant childhood obesity loci identified in genome-wide association studies. This locus resides in a non-coding region within FAIM2; thus, the underlying causal variant(s) presumably influence disease susceptibility via an influence on cis-regulation within the genomic region. We implicated rs7132908 as a putative causal variant at this locus leveraging a combination of our inhouse 3D genomic data, public domain datasets, and several computational approaches. Using a luciferase reporter assay in human primary astrocytes, we observed allele-specific cis-regulatory activity of the immediate region harboring rs7132908. Motivated by this finding, we went on to generate isogenic human embryonic stem cell lines homozygous for either rs7132908 allele with CRISPR-Cas9 homology-directed repair to assess changes in gene expression due to genotype and chromatin accessibility throughout a differentiation to hypothalamic neurons, a key cell type known to regulate feeding behavior. We observed that the rs7132908 obesity risk allele influenced the expression of FAIM2 along with other genes, decreased the proportion of neurons produced during differentiation, up-regulated cell death gene sets, and conversely down-regulated neuron differentiation gene sets. We have therefore functionally validated rs7132908 as a causal obesity variant which temporally regulates nearby effector genes at the ch12q13 locus and influences neurodevelopment and survival.

9.
bioRxiv ; 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37645863

RESUMEN

Although genome wide association studies (GWAS) have been crucial for the identification of loci associated with sleep traits and disorders, the method itself does not directly uncover the underlying causal variants and corresponding effector genes. The overwhelming majority of such variants reside in non-coding regions and are therefore presumed to impact the activity of cis-regulatory elements, such as enhancers. Our previously reported 'variant-to-gene mapping' effort in human induced pluripotent stem cell (iPSC)-derived neural progenitor cells (NPCs), combined with validation in both Drosophila and zebrafish, implicated PIG-Q as a functionally relevant gene at the insomnia 'WDR90' locus. However, importantly that effort did not characterize the corresponding underlying causal variant at this GWAS signal. Specifically, our genome-wide ATAC-seq and high-resolution promoter-focused Capture C datasets generated in this cell setting brought our attention to a shortlist of three tightly neighboring single nucleotide polymorphisms (SNPs) in strong linkage disequilibrium in a candidate intronic enhancer region of WDR90 that contacted the open PIG-Q promoter. The objective of this study was to investigate the influence of the proxy SNPs collectively and then individually on PIG-Q modulation and to pinpoint the causal "regulatory" variant among the three SNPs. Starting at a gross level perturbation, deletion of the entire region harboring all three SNPs in human iPSC-derived neural progenitor cells via CRISPR-Cas9 editing and subsequent RNA sequencing revealed expression changes in specific PIG-Q transcripts. Results from more refined individual luciferase reporter assays for each of the three SNPs in iPSCs revealed that the intronic region with the rs3752495 risk allele induced a ~2.5-fold increase in luciferase expression (n=10). Importantly, rs3752495 also exhibited an allele specific effect, with the risk allele increasing the luciferase expression by ~2-fold compared to the non-risk allele. In conclusion, our variant-to-function approach and subsequent in vitro validation implicates rs3752495 as a causal insomnia risk variant embedded at the WDR90-PIG-Q locus.

10.
Cancer Res ; 83(20): 3462-3477, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37584517

RESUMEN

Long noncoding RNAs (lncRNA) play an important role in gene regulation and contribute to tumorigenesis. While pan-cancer studies of lncRNA expression have been performed for adult malignancies, the lncRNA landscape across pediatric cancers remains largely uncharted. Here, we curated RNA sequencing data for 1,044 pediatric leukemia and extracranial solid tumors and integrated paired tumor whole genome sequencing and epigenetic data in relevant cell line models to explore lncRNA expression, regulation, and association with cancer. A total of 2,657 lncRNAs were robustly expressed across six pediatric cancers, including 1,142 exhibiting histotype-elevated expression. DNA copy number alterations contributed to lncRNA dysregulation at a proportion comparable to protein coding genes. Application of a multidimensional framework to identify and prioritize lncRNAs impacting gene networks revealed that lncRNAs dysregulated in pediatric cancer are associated with proliferation, metabolism, and DNA damage hallmarks. Analysis of upstream regulation via cell type-specific transcription factors further implicated distinct histotype-elevated and developmental lncRNAs. Integration of these analyses prioritized lncRNAs for experimental validation, and silencing of TBX2-AS1, the top-prioritized neuroblastoma-specific lncRNA, resulted in significant growth inhibition of neuroblastoma cells, confirming the computational predictions. Taken together, these data provide a comprehensive characterization of lncRNA regulation and function in pediatric cancers and pave the way for future mechanistic studies. SIGNIFICANCE: Comprehensive characterization of lncRNAs in pediatric cancer leads to the identification of highly expressed lncRNAs across childhood cancers, annotation of lncRNAs showing histotype-specific elevated expression, and prediction of lncRNA gene regulatory networks.


Asunto(s)
Leucemia , Neuroblastoma , ARN Largo no Codificante , Adulto , Humanos , Niño , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Perfilación de la Expresión Génica , Neuroblastoma/genética , Leucemia/genética , Genómica , Redes Reguladoras de Genes , Regulación Neoplásica de la Expresión Génica
11.
Eur J Sport Sci ; 23(10): 2002-2010, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37051668

RESUMEN

Hypoxia induced intestinal barrier injury, microbial translocation, and local/systemic inflammation may contribute to high-altitude associated gastrointestinal complications or symptoms of acute mountain sickness (AMS). Therefore, we tested the hypothesis that six-hours of hypobaric hypoxia increases circulating markers of intestinal barrier injury and inflammation. A secondary aim was to determine if the changes in these markers were different between those with and without AMS. Thirteen participants were exposed to six hours of hypobaric hypoxia, simulating an altitude of 4572 m. Participants completed two 30-minute bouts of exercise during the early hours of hypoxic exposure to mimic typical activity required by those at high altitude. Pre- and post-exposure blood samples were assessed for circulating markers of intestinal barrier injury and inflammation. Data below are presented as mean ± standard deviation or median [interquartile range]. Intestinal fatty acid binding protein (Δ251 [103-410] pg•mL-1; p = 0.002, d = 0.32), lipopolysaccharide binding protein (Δ2 ± 2.4 µg•mL-1; p = 0.011; d = 0.48), tumor necrosis factor-α (Δ10.2 [3-42.2] pg•mL-1; p = 0.005; d = 0.25), interleukin-1ß (Δ1.5 [0-6.7] pg•mL-1 p = 0.042; d = 0.18), and interleukin-1 receptor agonist (Δ3.4 [0.4-5.2] pg•mL-1p = 0.002; d = 0.23) increased from pre- to post-hypoxia. Six of the 13 participants developed AMS; however, the pre- to post-hypoxia changes for each marker were not different between those with and without AMS (p > 0.05 for all indices). These data provide evidence that high altitude exposures can lead to intestinal barrier injury, which may be an important consideration for mountaineers, military personnel, wildland firefighters, and athletes who travel to high altitudes to perform physical work or exercise.


Asunto(s)
Mal de Altura , Esfuerzo Físico , Humanos , Hipoxia , Mal de Altura/complicaciones , Mal de Altura/diagnóstico , Mal de Altura/metabolismo , Altitud , Inflamación
12.
Sci Adv ; 9(1): eabq0844, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36608130

RESUMEN

Genome-wide association studies (GWAS) in humans have identified loci robustly associated with several heritable diseases or traits, yet little is known about the functional roles of the underlying causal variants in regulating sleep duration or quality. We applied an ATAC-seq/promoter focused Capture C strategy in human iPSC-derived neural progenitors to carry out a "variant-to-gene" mapping campaign that identified 88 candidate sleep effector genes connected to relevant GWAS signals. To functionally validate the role of the implicated effector genes in sleep regulation, we performed a neuron-specific RNA interference screen in the fruit fly, Drosophila melanogaster, followed by validation in zebrafish. This approach identified a number of genes that regulate sleep including a critical role for glycosylphosphatidylinositol (GPI)-anchor biosynthesis. These results provide the first physical variant-to-gene mapping of human sleep genes followed by a model organism-based prioritization, revealing a conserved role for GPI-anchor biosynthesis in sleep regulation.


Asunto(s)
Drosophila melanogaster , Glicosilfosfatidilinositoles , Animales , Humanos , Glicosilfosfatidilinositoles/genética , Drosophila melanogaster/genética , Estudio de Asociación del Genoma Completo/métodos , Pez Cebra/genética , Mapeo Cromosómico , Pruebas Genéticas , Sueño/genética
13.
J Sports Med Phys Fitness ; 63(2): 264-272, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35912891

RESUMEN

The use of masks in public settings and when around people has been recommended to limit the spread of Coronavirus disease 2019 (COVID-19) by major public health agencies. Several different types of masks classified as either medical- or non-medical grade are commonly used among the public. However, concerns with difficulty breathing, re-breathing exhaled carbon dioxide, a decrease in arterial oxygen saturation, and a decrease in exercise performance have been raised regarding the use of mask during exercise. We review the current knowledge related to the effect of different masks during exercise on cardiorespiratory, metabolic, thermoregulatory, and perceptual responses. As such, the current literature seems to suggest that there are minimal changes to cardiovascular, metabolic, and no changes to thermoregulatory parameters with facemask use. However, differences in ventilatory parameters have been reported with submaximal and maximal intensity exercise to volitional fatigue. Literature on perceptual responses to exercise indicate an impact on ratings of perceived exertion, dyspnea, and overall discomfort dependent on mask use as well as exercise intensity. In conclusion, data from the current literature suggests a minimal impact on physiological, perceptual, and thermoregulatory responses dependent on the type of mask used during exercise.


Asunto(s)
COVID-19 , Máscaras , Humanos , Ejercicio Físico/fisiología , Respiración , Oximetría , Disnea
14.
High Alt Med Biol ; 24(1): 19-26, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36473199

RESUMEN

Bellovary, Bryanne N., Andrew D. Wells, Zachary J. Fennel, Jeremy B. Ducharme, Jonathan M. Houck, Trevor J. Mayschak, Ann L. Gibson, Scott N. Drum, and Christine M. Mermier. Could orthostatic stress responses predict acute mountain sickness susceptibility before high altitude travel? A pilot study. High Alt Med Biol. 24:19-26, 2023. Purpose: This study assessed head-up tilt (HUT) responses in relation to acute mountain sickness (AMS)-susceptibility during hypoxic exposure. Materials and Methods: Fifteen participants completed three lab visits: (1) protocol familiarization and cycle maximal oxygen consumption (VO2max) test; (2) HUT test consisting of supine rest for 20 minutes followed by 70° tilting for ≤40 minutes; and (3) 6 hours of hypobaric hypoxic exposure (4,572 m) where participants performed two 30-minute cycling bouts separated by 1 hour at a 50% VO2max workload within the first 3 hours and rested when not exercising. During HUT, systolic blood pressure (SBP), diastolic blood pressure, heart rate (HR), and variability (blood pressure variability [BPV] and HR variability [HRV]) were measured continuously. The AMS scores were determined after 6 hours of exposure. Correlations determined relationships between HUT cardiovascular responses and AMS scores. Repeated-measures analysis of variance (ANOVA) assessed differences between those with and without AMS symptoms during HUT. Results: Higher AMS scores correlated with greater change in SBP variability (r = 0.52, p = 0.048) and blunted changes in HRV (root mean square of successive differences between normal heartbeats r = 0.81, p = 0.001, percentage of adjacent normal sinus intervals that differ by more than 50 milliseconds [pNN50] r = 0.87, p < 0.001) during HUT. A pNN50 interaction (p = 0.02) suggested elevated cardiac sympathetic activity at baseline and a blunted increase in cardiac sympathetic influence throughout HUT in those with AMS (pNN50 baseline: AMS = 26.2% ± 15.3%, no AMS = 51.0% ± 13.5%; first 3 minutes into HUT: AMS = 17.2% ± 19.1%, no AMS = 17.1% ± 10.9%; end of HUT: AMS = 6.2% ± 9.1%, no AMS 11.0% ± 10.0%). Conclusions: The results suggest autonomic responses via HUT differ in AMS-susceptible individuals. Changes in HRV and BPV during HUT may be a promising predictive measurement for AMS-susceptibility, but further research is needed for confirmation.


Asunto(s)
Mal de Altura , Humanos , Proyectos Piloto , Altitud , Enfermedad Aguda , Hipoxia , Frecuencia Cardíaca/fisiología
15.
Cell Metab ; 34(9): 1394-1409.e4, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-36070683

RESUMEN

Three-dimensional (3D) chromatin organization maps help dissect cell-type-specific gene regulatory programs. Furthermore, 3D chromatin maps contribute to elucidating the pathogenesis of complex genetic diseases by connecting distal regulatory regions and genetic risk variants to their respective target genes. To understand the cell-type-specific regulatory architecture of diabetes risk, we generated transcriptomic and 3D epigenomic profiles of human pancreatic acinar, alpha, and beta cells using single-cell RNA-seq, single-cell ATAC-seq, and high-resolution Hi-C of sorted cells. Comparisons of these profiles revealed differential A/B (open/closed) chromatin compartmentalization, chromatin looping, and transcriptional factor-mediated control of cell-type-specific gene regulatory programs. We identified a total of 4,750 putative causal-variant-to-target-gene pairs at 194 type 2 diabetes GWAS signals using pancreatic 3D chromatin maps. We found that the connections between candidate causal variants and their putative target effector genes are cell-type stratified and emphasize previously underappreciated roles for alpha and acinar cells in diabetes pathogenesis.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Islotes Pancreáticos , Cromatina , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patología , Regulación de la Expresión Génica , Humanos , Células Secretoras de Insulina/patología , Islotes Pancreáticos/patología
16.
Eur J Appl Physiol ; 122(12): 2651-2659, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36114840

RESUMEN

PURPOSE: The purpose of this study was to determine the effect of prolonged high-intensity interval (INT) and moderate-intensity continuous (CONT) treadmill exercise in the heat on markers of enterocyte injury and bacterial endotoxin translocation. METHODS: Nine males completed 2 h of work-matched exercise in the heat (40 °C and 15% RH) as either INT (2 min at 80% VO2max and 3 min at 30% VO2max) or CONT (~ 50% of VO2max). Blood samples collected pre- and post-exercise were assayed for intestinal fatty acid-binding protein (I-FABP), claudin-3 (CLDN-3), and lipopolysaccharide-binding protein (LBP). RESULTS: I-FABP was significantly increased from pre- to post-exercise in CONT (913.96 ± 625.13 to 1477.26 ± 760.99 pg•mL-1; p = 0.014, d = 0.766) and INT (714.59 ± 470.27 to 1547.93 ± 760.99 pg•mL-1; p = 0.001, d = 1.160). Pre- to post-exercise changes in I-FABP were not different between CONT and INT (p = 0.088, d = 0.414). LBP was significantly increased from pre- to post-exercise in INT (15.94 ± 2.90 to 17.35 ± 3.26 µg•mL-1; p = 0.028, d = 0.459) but not CONT (18.11 ± 5.35 to 16.93 ± 5.39 µg•mL-1; p = 0.070, d = 0.226), and pre- to post-exercise changes in LBP were higher in the INT compared to CONT (p < 0.001, d = 1.160). No significant changes were detected from pre- to post-exercise for CLDN-3 in CONT (14.90 ± 2.21 to 15.30 ± 3.07 µg•mL-1) or INT (15.55 ± 1.63 to 16.41 ± 2.11 µg•mL-1) (p > 0.05). CONCLUSIONS: We conclude that prolonged exercise in the heat induces enterocyte injury, but interval (or intermittent) exercise may cause greater bacterial endotoxin translocation which may increase the risk for local and systemic inflammation.


Asunto(s)
Ejercicio Físico , Calor , Masculino , Humanos , Intestinos , Prueba de Esfuerzo , Biomarcadores , Endotoxinas
17.
Eur J Appl Physiol ; 122(11): 2437-2450, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35999474

RESUMEN

PURPOSE: To examine the effect of high-intensity interval work (HIIW) and moderate-intensity continuous work (MICW) on markers of acute kidney injury (AKI) and kidney function in a hot environment. METHODS: Nine males completed 2 h of work (2 × 60 min with 10 min passive rest) in a hot environment (40 °C and 15% relative humidity) as either HIIW [2 min at 80% peak oxygen consumption (VO2peak) and 3 min at 30% VO2peak] or MICW (matched for total work of HIIW). Blood and urine samples were collected immediately before (Pre), after (Post), 1 h (1 h Post), and 24 h after (24 h Post) the trials. Urine flow rate (UFR), creatinine clearance, insulin-like growth factor binding protein 7 (IGFBP7), urinary neutrophil gelatinase-associated lipocalin (uNGAL), and urinary kidney injury marker 1 (uKIM-1) were measured to assess kidney function and injury. RESULTS: Log IGFBP7 (p < 0.01), log uNGAL (p < 0.01), and log uKIM-1 (p = 0.01) all displayed a main effect for time after both HIIW and MICW. IGFBP7 (p = 0.01) and uKIM-1 (p < 0.01), corrected for Uosm, were higher after HIIW compared to MICW at Post, while IGFBP7 was also higher 1 h Post after HIIW compared to MICW (p = 0.02). UFR significantly decreasing from Pre to Post (p < 0.01) and 1 h Post (p < 0.01), but no main effect for condition (p = 0.53). CONCLUSION: Both HIIW and MICW in a hot environment caused an increase in biomarkers of kidney injury (IGFBP7, KIM-1, and NGAL), but HIIW may have a greater impact on biomarkers related to AKI.


Asunto(s)
Lesión Renal Aguda , Lipocalinas , Lesión Renal Aguda/diagnóstico , Lesión Renal Aguda/etiología , Biomarcadores , Creatinina , Humanos , Proteínas de Unión a Factor de Crecimiento Similar a la Insulina , Lipocalina 2/orina , Lipocalinas/orina , Masculino
18.
Am J Hum Genet ; 109(8): 1366-1387, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35931049

RESUMEN

A major challenge of genome-wide association studies (GWASs) is to translate phenotypic associations into biological insights. Here, we integrate a large GWAS on blood lipids involving 1.6 million individuals from five ancestries with a wide array of functional genomic datasets to discover regulatory mechanisms underlying lipid associations. We first prioritize lipid-associated genes with expression quantitative trait locus (eQTL) colocalizations and then add chromatin interaction data to narrow the search for functional genes. Polygenic enrichment analysis across 697 annotations from a host of tissues and cell types confirms the central role of the liver in lipid levels and highlights the selective enrichment of adipose-specific chromatin marks in high-density lipoprotein cholesterol and triglycerides. Overlapping transcription factor (TF) binding sites with lipid-associated loci identifies TFs relevant in lipid biology. In addition, we present an integrative framework to prioritize causal variants at GWAS loci, producing a comprehensive list of candidate causal genes and variants with multiple layers of functional evidence. We highlight two of the prioritized genes, CREBRF and RRBP1, which show convergent evidence across functional datasets supporting their roles in lipid biology.


Asunto(s)
Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Cromatina/genética , Genómica , Humanos , Lípidos/genética , Polimorfismo de Nucleótido Simple/genética
19.
Genome Biol ; 23(1): 125, 2022 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-35659055

RESUMEN

BACKGROUND: SARS-CoV-2 infection results in a broad spectrum of COVID-19 disease, from mild or no symptoms to hospitalization and death. COVID-19 disease severity has been associated with some pre-existing conditions and the magnitude of the adaptive immune response to SARS-CoV-2, and a recent genome-wide association study (GWAS) of the risk of critical illness revealed a significant genetic component. To gain insight into how human genetic variation attenuates or exacerbates disease following SARS-CoV-2 infection, we implicated putatively functional COVID risk variants in the cis-regulatory landscapes of human immune cell types with established roles in disease severity and used high-resolution chromatin conformation capture to map these disease-associated elements to their effector genes. RESULTS: This functional genomic approach implicates 16 genes involved in viral replication, the interferon response, and inflammation. Several of these genes (PAXBP1, IFNAR2, OAS1, OAS3, TNFAIP8L1, GART) were differentially expressed in immune cells from patients with severe versus moderate COVID-19 disease, and we demonstrate a previously unappreciated role for GART in T cell-dependent antibody-producing B cell differentiation in a human tonsillar organoid model. CONCLUSIONS: This study offers immunogenetic insight into the basis of COVID-19 disease severity and implicates new targets for therapeutics that limit SARS-CoV-2 infection and its resultant life-threatening inflammation.


Asunto(s)
COVID-19 , COVID-19/genética , Estudio de Asociación del Genoma Completo , Humanos , Inflamación , SARS-CoV-2/genética , Índice de Severidad de la Enfermedad
20.
Sleep ; 45(8)2022 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-35537191

RESUMEN

We investigated the potential role of sleep-trait associated genetic loci in conferring a degree of their effect via pancreatic α- and ß-cells, given that both sleep disturbances and metabolic disorders, including type 2 diabetes and obesity, involve polygenic contributions and complex interactions. We determined genetic commonalities between sleep and metabolic disorders, conducting linkage disequilibrium genetic correlation analyses with publicly available GWAS summary statistics. Then we investigated possible enrichment of sleep-trait associated SNPs in promoter-interacting open chromatin regions within α- and ß-cells, intersecting public GWAS reports with our own ATAC-seq and high-resolution promoter-focused Capture C data generated from both sorted human α-cells and an established human beta-cell line (EndoC-ßH1). Finally, we identified putative effector genes physically interacting with sleep-trait associated variants in α- and EndoC-ßH1cells running variant-to-gene mapping and establish pathways in which these genes are significantly involved. We observed that insomnia, short and long sleep-but not morningness-were significantly correlated with type 2 diabetes, obesity and other metabolic traits. Both the EndoC-ßH1 and α-cells were enriched for insomnia loci (p = .01; p = .0076), short sleep loci (p = .017; p = .022) and morningness loci (p = 2.2 × 10-7; p = .0016), while the α-cells were also enriched for long sleep loci (p = .034). Utilizing our promoter contact data, we identified 63 putative effector genes in EndoC-ßH1 and 76 putative effector genes in α-cells, with these genes showing significant enrichment for organonitrogen and organophosphate biosynthesis, phosphatidylinositol and phosphorylation, intracellular transport and signaling, stress responses and cell differentiation. Our data suggest that a subset of sleep-related loci confer their effects via cells in pancreatic islets.


Asunto(s)
Diabetes Mellitus Tipo 2 , Islotes Pancreáticos , Trastornos del Inicio y del Mantenimiento del Sueño , Mapeo Cromosómico , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo , Humanos , Islotes Pancreáticos/metabolismo , Obesidad/metabolismo , Sueño , Trastornos del Inicio y del Mantenimiento del Sueño/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...